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Giant negative photoconductivity in La  ¢7Cag3MnO3 thin films
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The increase of the resistance up to two orders of magnitude under laser illumination (
=760 nm) was observed in haCa MnO; (LCMO) epitaxial thin films in ferromagnetic state.
Optical absorption also increases by 10—15 % and the magnetic second-harmonic generation signal
decreases down to zero under the irradiation. The light induced changes are reversible with
characteristic relaxation timesr~1-30s. Magnetic field, B=4T, suppresses the
photoconductivity and decreases its relaxation time. Photoinduced effects are caused by the
injection of a large number of extra carriers, which change@méferromagneticAFM/FM phase
balance in LCMO, favoring the insulating AFM state. ZD04 American Institute of Physics.
[DOI: 10.1063/1.1687555

Complex phase diagram in perovskite mangafite’s  scale 1-100 s for temperatures 90—300 K and magnetic field
governed by two main interactions: double exchahgéjch  B=0, 4 T. The films were prepared by a metal-organic aero-
favors ferromagneti¢EM) metallic state, and electron lattice sol depositiofMAD) techniquet* Single LCMO film with a
interaction(Jahn—Teller effeg® which results in antiferro-  thicknessd=120 nm (sample A and a trilayer structure
magnetic (AFM) charge ordered insulatofCOI). It was LCMO(15 nm/MgO(5 nm/LCMO(15 nm/MgO(100 (B)
argued that the competition between the AFM and FM were studied. Perfect crystalline structure was confirmed by
phases in the presence of disorder results in electronic phageray diffraction’® The films showT =260 K (A) and 250
separationEPS and percolative electron transport. EPS de-K (B), accompanied by very sharp magnetic, M}/
velops on the nanometésubmicrometerscale as was ob- X(dM/dT)=25%/K, and resistive, (R)(dR/dT)
served by scanning tunneling microscdpyColossal mag- =15%/K, transitions measured by a superconducting quan-
netoresistancéCMR) was thus viewetlas magnetic field tum interference device magnetometer and four-probe dc
induced percolation in an electronically inhomogeneous memeasurements, respectively. For optical and photoelectric
dium; the current path is switched by the field, which favorsmeasurements the beam of an ,@4:Ti laser (\,,

FM metallic phase and suppresses AFM insulating8ne. =760 nm, At,,se= 100 fs, repetition rate 82 MHz, average

An attractive way to study phase transformations seempower up to 1 W} was focused onto a spot of about .
to be optical injection of extra carriers. A decrease of theThe sample was placed in an optical nitrogen-flow cryostat
resistance under laser irradiation with very short relaxatiorinside the superconducting magnet. Transmission geometry
times 7~150 ps forT>T¢ in a Lg Ca MnO; (LCMO)  was used with the angle of incidence of 45°; magnetic field
film® was interpreted as a photoionization of the Jahn-Tellewas parallel to the light propagation direction. Two signals
(JT) small polarons. Foll <T the resistance increases un- were measured simultaneously: transmission gand SHG
der irradiation and the relaxation becomes slower, signal at\,,. The details of the SHG experiments are re-
=1-10ns, indicating the excitation of magnons. Photoinported elsewher
duced change of optical absorption also changes with The resistivityp of the samples in dark and under laser
~100 ns under the pulsed laser irradiatfSrihat was inter- irradiation forB=0 andB=4 T as a function of temperature
preted as formation of Col clusters. For are shown in Fig. 1. Dark(T) shows classical CMR: metal-
(Ndg 5SMy 5).6S1.4MNO5 (Ref. 1)) a photoinduced demag- insulator transition occurs di, =250 K (A) and 230 K(B),
netization manifests within 200 ps after laser pulse and thend magnetic field B=4 T) decreasep, yielding CMR
spin correlation recovers in 300 ns. Moreover, the COI/AFM=100%X[(p(0)—p(B)]/p(0)~90% with a sharp maxi-
ground state in “dark” for Pg/Ca, sMnO5 transforms into a mum in the vicinity ofT,, . The laser illumination leads to a
FM metallic state after 10-100us of the laser drastic increase gb for T<T( yielding maximal photocon-
irradiation?13 ductivity,  AR/Ryai= 100%X (paark— Piighd)/ Paarks  Of

We studied the transients of the photoconductiViRg), —600% (A) and —10"% (B). CMR decreases under irradia-
optical absorption, and second-harmonic generati®iHG)  tion and its temperature distribution shifts to lower tempera-
in epitaxial Lg/Ca MnO3/MgO(100) films on the time tures. The thinner film B shows no metallic behavior under
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FIG. 1. Electrical resistivty and CMR=100%X[p(0)—p(4T)]/p(0) as a FIG. 3. Th d d fth . . LCMO fi ith
function of temperature for a LCMO film with thickness 120 fiRigs. 1a) - 3. The temperature dependence of the resistance in a lim wit

and 1b), respectively and for a trilayer structure LCMQ@5 nm/MgO(7 Tw~140K fqr _different values of Iaser_pulse power. The inset shows the
nm)/LCMO(L5 nm) [Figs. Xc) and Xd)]. Closed and open symbols denote photoconductivity, AR/R4., @s a function of laser pulse power fdr

p values in dark and under illumination, respectively. Square symbols refer- 90 K.

to thep values at zergambienj magnetic fieldB=0, and triangles denote

p(B=4T). Closed and open circles relate to the CMR data in dark and

under irradiation, respectively.

=90 K. Even forT=300 K magnetic field still affects—it

irradiation at zero field and behaves rather insulating witHalls down at least to about 0.15 s, which was the limit of our
dp/dT<0 for T=90—300 K. Note, the heating of the film Measurement setup. Note thatecreases under illumination
by laser irradiation plays a minor role due to very shortin the paramagnetic region, resulting in a positive photocon-
(At=100fs) pulses and repetition ratdt=13 ns), which  ductivity, and increases fof<T¢ (negative photoconductiv-
prevent the excitation of phonons. Moreover, maximality)- Nonlinear behavior of the photoconductivity on the laser
change of resistance is observed at the lowkstoo K  Pulse power] can be clearly seen in Fig. 3, wheR{T)
where the heating effect is negligible due to the smallesturves for a LCMO film with lowT, =140 K are shown.
value of dR/dT. Resistivity transients for film A are shown FoOr relatively lowJ minor changes of the resistance were
in Fig. 2. The relaxation of the photoconductivity is de- observed in the ferromagnetic region. Only fdr>2.5
scribed by exponential formyR(t) ~exp(~t/7), with decay X 10° W/en?* the photoconductivity shows a clear increase
times’ 7~1—-30s, depending on the temperature and magas seen in the inset of Flg 3, where the dependence of the
netic field. ForT>T. andB=0 the relaxation is relatively Photoconductivity on the power fdr=90 K is depicted. Ex-
fast, 7=1.6 s, while increases up te=22s atT=90 K.  Perimental points can be fitted by a quadratic functiai
Magnetic field, B=4 T, enhances the relaxation of the pho- ~J°. Moreover, the sign of the photoconductivity depends
toconductivity, yielding a decrease ofdown b 6 s atT ~ ©On the laser power. Fat~2.2x10° W/cn? we detected re-
liably ~1% decrease of the resistance rather than increase
observed for higher fluencies. Nonlinear power dependence
of the photoconductivity indicates that photoinduced effects

2 [T RS play an important role in LCMO. Direct evidence for change
M A N 7 1! of optical parameters under irradiation is seen by SHG tran-
o [ \ P otroee ? sients in LCMO film[Figs. 4a,b]. The inset of Fig. &)

s [ L TTgmemmmmement e e 8 reveals unusual dynamics of SHG, measuresigfAy- and

PP(App)-polarization combinations, namelg, signal van-
ishes within 20—30 s after the shutter was opened. Similar
behavior was observed fpis andss combinations; however,
their very low intensity complicates any quantitative analy-
sis.App signal also decreases somewhat during 10 s after the
shutter is openefsee Fig. 4b)], but afterwards it increases
and saturates within the next 30 s. Optical transmisgion
(absorption, ) decreases(increases and saturates after
aboutts~ 20 s of the irradiatiofiFig. 4(c)]. Maximal relative
change of the absorptiolAa/a=[T(0)—T(tg)]/T(0)

FIG. 2. PhotoconductivityA R/Ryai= (Rgark— Riight)/Raark, transients for a reaches 10-15% for ferromagnetl_c state. . .
LCMO film obtained atB=0 anacri B:4§I[ for I(‘E).:}lram":\a{g’netic region &t We_ops_erved _Very large p_hOtomduced ch_anges in e_lecm'
—300 K (a), in the vicinity of the metal-insulator transitich=250 K (b), ~ Cal resistivity, optical absorption, and SHG in LCMO films
and for ferromagnetic phase=90 K (c). under laser irradiation. Their temperature behavior, shown in
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=760 nm)~10° cm ! (Ref. 19, which provide homoge-
neous photogeneration of extra carriexp~ BaJ7.2° Here,
B is a quantum efficiency) the number of photons/chs,
and r the stationary lifetime of excess carriers. In the case of
sample A @=120 nm) generation occurs mostly in a very
thin layer with d<1/a, while the rest of the film remains
metallic (T<Tc) and shunts the surface layer. Estimated
number of excess carrierAp generated in LCMO T

L e =90 K) by means of our laser system is very larye
i N e =(10°)(0.8x 10" (22)~10°cm 3, but it is still much

IS smaller than equilibrium carrier concentrationp

o =20
[T AP oo o Oy OO e - - -

- c) =0.33/(unit cellf~5.6x 107 cm™3 due to Ca doping.
Z\_,_,—————-——— Therefore it seems unlikely that the metal-insulator transition
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and demagnetization of LCMO under irradiation occurs in
the same way as by increasing Ca doping frem0.33 to
_____ x=0.5. We believe that photoexcited carriers can trigger a
o 5 5 =5 T cooperative Jahn-Teller transformatiafrbital ordering
Time (sec) within small clusters in accordance with the EPS pictdre.
FIG. 4. Time dependences of the SHG in {rén, p-out (solid symbol$ Und_er irradiation the size and/or number(@DI AFM) C|_US-
ands-in, p-out (open symbols, multiplied by A@olarization combinations ~ t€rs increases on the expensérottallic FM) clusters, yield-
atB=0 (a) andB=4T (b) for a LCMO film atT=90K. Lines in(b) and  ing to enhanced electroni@ptica) inhomogeneity of the
g) t?clefit‘rsa;osr:?st:k‘)"g‘; ianPef(F;Sts)i“f‘(’)'r‘ ‘)’\f exgggi’:n“?::)dzaé’ agdfl:g‘f’rlh- film. Experimental support for such scenario is given by
:ZO K. In (c) solid and d:als% curves relur;\te to the values of average powe?HG tranSIemS[Flg' 4(b)]’ name,ly’ magnetic .contrlbuyon.
0.5 and 0.25 W, respectively. Agp decreases down to zero within 20 s under illumination in
consistence with “melting” of thgmetallic FM) clusters. In
contrast the “crystallographicA,,, component,*®increases
from a small value in darkt&0) and saturates within 30 s
of illumination. This behavior is in accordance with the in-
crease of the weight ¢COI AFM) clusters under irradiation.

Transmission (%)

Fig. 5, looks qualitatively similar to that of the film magne-
tizationM(T), thus evidencing a tight coupling of the photo-

induced effects with magnetic ordering. Moreover, a su o . . .
g g pMagnetlc field 8=4T), favoring ferromagnetic DE inter-

pression of theAg, signal under irradiatiofanalogously to tion. inhibits the relaxati f1h ofi i
ss signal, which represents pure magnetic contribution ipction, Nnibits the relaxation of the magnektg, componen

SHG (Refs. 17 and 1§ indicates that photoexcitation is ac- und_er iIIumination and decreases crystallograghigcontri-
companied with demagnetization of LCMO. The photoex—bUt'on[F'g' 4b)]

and even insulating behavior for sample B. Extremely largesgitingen, and the Japanese Society for the Promotion of
photoconductivity in sample B is due to small thickness  gcience are acknowledged.

=30nm and to large absorption coefficien&(\,
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